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Received I February 1991 

Abstract. Dyron introduced two types of Brownian-motion ensembles of random matrices 
for studying approximate symmetries in complex quantum systems. The magnitude of 
symmetry breaking plays the role of a fictitious time 1 3 0 .  We study here the eigenvalue 
correlations in the circular-type ensembles which serve as models for the evolution operators 
ofquantum maps with chaoticclassical limits. I n  two carer involving time-reversal symmetry 
breaking we evaluate explicitly the eigenangle-density correlation functions of all orders 
for all I and for all valucs of the matrix dimensionality N. The general case is described 
by a hierarchic set of relations among the correlation functions. As a function of I .  the 
transition in the correlations is found t o  be rapid for large N, discontinuous for N - m .  
As a function o f a  local parameter A, which measures the mean square symmetry-admixing 
matrix element in units of the local average spacing, the transition is found to be smooth. 
The same I\-dependent results were found earlier for the Gaussian-type ensembles which 
serve as models for the Hamiltonian operators d autonomous chaotic systems. We show 
elsewhere by a semiclassical calculation for a class of quantum maps with time-reversal 
breaking that the long-range correlations are identical to those obtained in this paper. Our 
results thus indicate a universality associated with the 'non-equilibrium' eigenvalue 
statistics. 

1. Introduction 

Recent studies on quantum chaos indicate that the distribution of eigenvalues 
(specifically, the local correlations and fluctuations in eigenvalue sequences) of compli- 
cated operators fall into universality classes which can he modelled by random matrices. 
Two types of random matrices have proved particularly useful. These are the Gaussian 
ensembles (GE) of Hermitian matrices and  the circular ensembles (<:E) of unitary 
matrices, serving respectively as models for the Hamiltonian operators of autonomous 
systems and for the evolution operators of quantum maps (i.e., systems with time- 
periodic Hamiltonians), the underlying classical dynamics in both cases being fully 
chaotic. For each of the two types, there are three important universality classes, 
determined by the invariance of the system under time-reversal ( T R )  transformation 
[I-41 (or  more generally antiunitary transformations [ 5 ] )  and described by the invari- 
ance of the ensemble measure: invariance under orthogonal (0) or symplectic (S)  
transformations for TR-invariant systems and under unitary ( U )  transformations for 
Tn-noninvariant ones; the invariance restricts the allowed space of matrices, for 
example, to that of symmetric matrices for 0-invariance. The GOE, GSE and C U E  thus 
constitute the three universal GES whereas the COE, CSE and C U E  the three universal 
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CES. A semiclassical theory of the long-range correlations [6], numerical simulations 
[4,7-111 of systems with few degrees of freedom, and  experimental data on complex 
systems 112-151 confirm the validity of the universality. 

The ensemble theory for the universality classes is akin to that in equilibrium 
statistical mechanics where no  attention is paid to the approach to equilibrium. A 
non-equilibrium ensemble theory [I61 would however be  useful, for example, for an 
autonomous chaotic system with Hamiltonian H, in which a symmetry is broken, a 
being a measure of the breaking. For  TIZ symmetry, GOE statistics may apply for a = 0 
but, at asymptotically large energies, C U E  statistics would apply for any a # 0; however, 
at intermediate energies with sufficiently small values of a an intermediate statistics 
would be obtained, indicative of a non-equilibrium behaviour. Similarly if the system 
is integrable with regular classical motion for a = 0, but fully chaotic for a # 0, a 
Poisson + GOE transition may be realized. Examples of such behaviour have been 
indicated in numerical simulations [8, 17, 181 as well as experimental data [13, 141. 

For a time-periodic Hamiltonian, the evolution operator (for the period of the 
Hamiltonian) generates the quantum map. The  map is defined in a finite ( N ) .  
dimensional Hilbert space, if the corresponding classical map is restricted to a finite 
phase space. For symmetry-breaking, involving a-dependent evolution operators U,, 
the role of energy will be  replaced by that of the dimension. For N + m ,  the statistics 
would be  that of one of the universality classes, but, for finite large N, intermediate 
statistics would again be observed for small a .  Many such transitions (including 
COE+CUE) can be studied numerically in the systems of kicked tops and rotators 

In order to model the approach to equilibrium, Dyson [ 19,201 introduced Brownian- 
motion ensembles of random matrices, characterized by a fictitious ‘time’ I and a 
fictitious ‘temperature’ p- ‘ ,  which, for large I ,  yield the equilibrium ensembles (with 
p = 1,4 ,2  respectively for 0, S and U). When applied to real systems, the parameter 
f will be  a measure of symmetry breaking, related to a as discussed ahead. He showed 
that, in such ensembles, the dynamics of eigenvalues (constrained to move on the real 
line in G E  and on the unit circle in CE) is identical to that of a set of charged particles, 
moving under the mutual repulsion of a two-dimensional Coulomb (logarithmic) 
potential and executing Brownian motion in time 1. He also conjectured that the 
transition to equilibrium will be rapid, discontinuous for infinite-dimensional matrices, 
as a function of I. 

The Gaussian type Brownian ensembles have been the subject of several recent 
studies [16,21-241. They confirm the Dyson conjecture and show moreover that the 
transition in the energy-level correlation functions is governed, for small I and large 
matrix dimensionality N, by an energy-dependent parameter A which measures locally 
the mean-square symmetry breaking (off-diagonal) matrix element in units of the 
average level spacing; it is zero for I = 0 and its large values mark the completion of 
the transition. For G O E + G U E  and GSE’GUE transitions, the correlation functions of 
all orders and for all A have been explicitly evaluated [22,23]; for the other transitions, 
the correlation functions are given implicitly by a hierarchic set of relations [161. 

Our purpose in this paper is to study the correlation functions in the circular type 
Brownian ensembles, We shall show that the same parameter A governs the transition 
in these ensembles also, and shall moreover establish that the correlation functions of 
all orders under similar initial conditions, and  for the same A and p ,  are identical to 
those obtained in the Gaussian cases. For 1+00 (equilibrium cases), the latter result 
had been proved by Dyson [25] and Mehta [26]; but the extension to the non- 

[4, IO, 111. 
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equilibrium ensembles is not obvious. This suggests that there is a universality associated 
with the non-equilibrium statistics also. 

In real systems t and  A can be usually inferred from the infinitesimal variations 
ofH,  or U,. WhenH,+, ,=H, ,+SaVor  U,+, . ,=U,( l+isaV),wemaytake f = a * ,  
Sf = (sa)’ and A = a2u2 /D2;  here D is the mean spacing (=27r/ N for quantum maps) 
and  pu2 is the mean of 1 V,,/’ with Vi the near-diagonal matrix element of V in H,. or 
U,-diagonal representation. The assumption here is that V, written in H‘,. or U , -  
diagonai representation, wouid be a random matrix. 

Our current interest in the circular ensembles stems from the fact that the numerical 
simulations are relatively easier for the quantum maps and therefore all aspects of the 
non-equilibrium ensembles may be  verifiable. We mention, however, that the GOE + G U E  

transition results have been used to obtain bounds on TR-non-invariance in the nuclear 
interaction [ 161. Morever, a parameter qualitatively similar to A has been conjectured 
[ g j  For a chaotic biiiiard in a magnetic fieid; a very recent numericai calculation [iij 
confirms the  COE’GUE transition for the same system. In a later paper we shall use 
the ideas of [6,8] for quantum maps to obtain semiclassically the A-dependent long- 
range correlations for TR-non-invariance. 

In section 2 we shall give a brief review of the Dyson theory for the circular type 
Brownian ensembles and  then obtain explicitly the  joint-probability density of the 
eigenangles for p =2. I n  sections 3 and  4 we shall use the p = 2 solution to derive, 
respectively for COE’CUE and CSE+ C U E  transitions, the correlation functions of all 
orders for all N. Our proofs will run parallel to those in the Gaussian transitions [23] 
and  will rely on the elegant techniques developed by Dyson and  Mehta [3,25,26] for 
the equilibrium ensembles. Some of the details of the derivations are included in 
appendices 1-3 and some additional results in appendix 4. In  section 5 we shall derive 
the genera! hie:a:chic :c!a:ions ::.hi&, fc: !x:ge ,N, wi!l he !he s ~ m e  8s those fcr :he 
Gaussian cases [16]. In the concluding section we shall give a brief summary of our  
semiclassical result mentioned above. 

2. The circular-type Brownian ensembles 

7 I . Proliminnrirr ._........I.._I 

We shall abbreviate the two types of Brownian ensembles as C E ~ ( ~ )  and cE,,,(f). The 
basic Brownian ‘steps’ are given in terms of the equilibrium ensembles G E ~ ( W )  which 
we define in this subsection. 

We first define a self-dual N-dimensional matrix B [28,2Y]. To take account of 
the threefold classification, we write B = X B,e, where r = 0.1,. . . , p - 1 and the e, are 
the quaternion units (i.e., e,, = I ,  eye,,+ e&, = -26,,. for r, r ‘ Z  0). Then, for a self-dual 
E, E, is symmetric for r = 0 and antisymmetric for r # 0, and, for a self-dual Hermitian 
B, the B, are also real. To make correspondence with quantum problems, we replace 
e ,  by their two-dimensional matrix representatives for p = 4, but, for p = 1,2,  we merely 
write e ,=  1 ,  e ,  = i. 

The GE,,(w) is an ensemble [I-31 of self-dual Hermitian matrices M in which the 

Gaussian variables. The variances are U’ for the off-diagonal matrix elements and 2u’ 
for the diagonal ones of M<,, Thus, with bar denoting ensemble averaging, 

distinct eieiileiiis of rvf, Bie disifibuied indepen;eni;y g j  reio-crntred 

- 
M , : , = O  (1) 
M,:,,M,,:u = 6,,,(6aS,i* S d i , ) u ’  (2)  
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where in (2) the upper sign is for r = 0 and the lower for r # 0. U* fixes the scale and, 
in the Brownian ensembles, can be absorbed in the definition of f. To begin with we 
choose u2 = I ;  a different choice [ 191 (pfu‘= I where f is the ‘friction coefficient’) 
makes the correspondence with the Langevin equation in section 2.2 more precise; in 
section 5 we shall make other choices. 

Equations ( 1 )  and (2) are representation-independent, as long as the symmetry of 
the system is preserved; for example, with p = 1, all orthogonal transforms of M are 
contained in the GOE. 

A Pandey and P Shukla 

2.2. Diffusion equafion for c E p ( t )  

The CE@( I )  is an ensemble of time-dependent self-dual unitary matrices U (  1 )  in which 
the symmetry-breaking is introduced at each time f as an infinitesimal random perturba- 
tion. For eigenvalue considerations, it is adequate to define it by 

U ( f  + s t )  = U ( f )  exp(id% M(f) )  (3)  

where 61 is infinitesimal and M ( f ) ,  independent for each f, is a member of G E ~ ( ~ ) .  

U ( 0 )  is taken to be a diagonal unitary matrix. 
Let 8 , ( f )  be the eigenangles of U ( f ) .  Then, from the standard perturbation theory 

for unitary matrices, 

se, = @,( t+  s t )  - e,( 1 )  

where in the last form, correct to first order in st, the f-dependence of M and are 
understood. For fixed e,, we use ( l ) ,  (2) in U(f)-diagonal representation to perform 
the averages. We find, to the same order in S f ,  

- se, = p E ( e , ) S f  

ss,ss,= 28,161 

where 

with QN = 1 for N = 1. Equations (5)-(8) formally establi the equivalence of the 
Brownian motion of the eigenangles with that of a gas of unit charges on the unit 
circle under the mutually repulsive two-dimensional Coulomb forces [3,  191. Note that 
the force E ( 8 , )  is the tangential component of the electric force felt by the charge at 
exp(i8,). The corresponding Langevin equation (representing an overdamped case) 
can be obtained from (4) by taking the S f - 0  limit and replacing ( M ,  r A ) ’ ,  for j #  k, 
by its average. 
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A diffusion equation for the joint-probability density of the eigenangles, P(8; t ) ,  
can be obtained from (9, (6): 

Starting with an initial distribution (given by 11 of the eigenangles of U ( 0 ) )  (9) gives 
P uniquely for all t > O .  The equilibrium distribution ( t + m )  is obtained from the 
electric potential (-1ogIQJ): 

p ( 0 ;  CO(N)IQNIP (10) 

which can also he verified easily from the last form of (9) and is valid for COE, CUE 

and CSE depending on the value of p. See [3,28] for the normalization constant C , ( N ) .  
A similar diffusion equation is also obtained for c E P ( t )  [16, 191. Note that one can 
now extend (9) to other p values; p = O  for example may be considered the analogue 
of a Poisson ensemble whereas p =oo corresponds to a uniform case with charges 
equally spaced on the circle. 

2.3. Formal solution of the diffusion equation 

The transformation e =  P/IQ,Ip12 allows us to cast (9) in the suggestive form 

where the ‘Hamiltonian’ H is given by 

With periodic boundary conditions and  the requirement (to take account of the 
singularity in H )  that the solutions vanish as 18, - 8,I”’ when 0, and are close to 
each other, H has well-defined (completely symmetric) eigenstates & and eigenvalues 
A i .  We have then 

where 4 = ($, , . . . , qbN) are the eigenangles of U ( 0 ) .  I f  a distribution were defined 
on 4 also, then 

P ( 0 ;  O =  P(8,  4; OP(4; 0 )  d 4 1 , .  . . , d 4 , v  (14) 

Equations (13) and (14) represent the formal solution of (9). In  keeping with ( I O ) ,  the 
ground state must be non-degenerate with A , , =  0, e,)= C~”~Q,v~P’2; all othereigenvalues 
must be positive. Sutherland [30] has discussed the Hamiltonian (12)  and obtained 
the excited states; no compact solution for P has been obtained. However, for p = 2 ,  
the interaction term in (12) drops out and  then, as discussed below, P can be obtained 
explicitly. 

I 
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2.4. Solution f o r  p = 2  

For p = 2 ,  it is slightly better to use the transformation i= P J Q N .  We again obtain 
(11) and (12) without the interaction term. Now i must be completely antisymmetric 
since QN is. The eigenvalues and  eigenvectors can therefore be written as 

A Pandey and P Shukla 

where the ik are appropriately antisymmetrized and k = (k , ,  , . , , k N ) .  The k, are fixed 
by the periodic boundary conditions. When 8, + 0, + 2.n for any j ,  QN acquires a phase 
( - l ) N - l  and hence ik must also acquire the same phase. Thus k, = 0,  * l ,  1 2 , .  , , , o r ,  

(with IQ1 + Q, A + and t+ 5) completes the solution. Note that the boundary condition 
for small separations is already built into (16). 

A compact solution for P is obtained if we expand the determinants in terms of 
their matrix elements and  then carry out the eigenvalue sum ( X h )  first. The latter sum 
yields typically 

*I 2 ,  *1 *, . . . , depending on whether N is odd o r  even. Substitution of (IS) ,  (16) in (13) 

where 

and p ,  p' denote independent permutations on the indices j .  In (18) the values of k 
are integral if N is odd, half-integral if N is even. Now the determinantal sum Xp, ( -1)" '  
gives a determinant while the other sum X,, fixes the ordering of 8, + indices 
and yields a factor N! (these sums are equivalent to the antisymmetrization of (17) 
with respect to 0 and + both); the ordering of indices is the same as that in QN. The 
final result is 

To verify the equilibrium solution note that the ground state ( A , , = O )  is given in ( l S ) ,  
(16) by k , = ( N - 1 ) / 2 ,  ( N - 3 ) / 2 ,  . . . ,  - ( N - l ) / Z .  Since det[exp(ik,O,)]= 
2 N( N-1112 QN(0), we obtain P ( 0 ; W ) = C 2 ( N ) I Q N l '  wlth C Z ( N ) =  
(za)-N( N!)-'2""-" . A similar technique facilitates the solution of the c E 2 ( f )  
equation [23,31]. 

2.5. Definition of correlation functions 

The n-angle correlation function [25] is defined as 
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where R ,  = N !  P. We would be  interested in the large-N limit, for which the @-spectrum 
must first be  'unfolded'. Using the unfolding function 

we have the unfolded correlation function 

R I n  n . 
' I  ..,,,", . . . " # ,  

R,(r , ,_. . ,  r , , ; A ) =  lim 
N - - R R l ( O l ; t )  . . .  R, (B , ;  1 )  

where the A-argument in R, is included in anticipation of the results ahead. One can 
define cluster functions also which follow from the correlation functions [25]; see 
appendix 4. All fluctuation measures, viz. measures of eigenvalue regularity used in 
data analysis, follow from R. [ 2 ,  16,241; we shall not deal with them here. 

Starting with (19), we shall derive R ,  and R, in sections 3 and 4 respectively for 
the COE-CUE and CSE'CUE transitions. The hierarchic relations among R, in 
section 5 will he  derived from (9). 

3. COE -+ CUE ensembles 

In this section we shall obtain the correlation functions for the COE-CUE 
ensembles. The joint-probability density of the eigenangles is given by (14) and 
(19) with the initial distribution P(q5;O)=C,(N)IQN(4)I  where C , ( N ) =  
( 2 T ) - N ( 1 1 ( 5 ) ) N  2 N " - l J / 2  (r( 1 + N / 2 ) ) - ' .  To work out the integral we shall use Mehta's 
[3] method of integration over alternate variables; the result will be  obtained in terms 
o f t h e  Pfaffian (Pf) of an even-dimensional antisymmetric matrix A; Pf[A] = (det A)"' 
is expressible as  a polynomial function of the matrix elements. For the correlation- 
function integrals we shall use Dyson's quaternion-determinant method [25 ,29 ] ;  the 
quaternion determinant (Tdet) of a self-dual quaternion matrix B (section 2.1) is 
(det M ( B ) ) " 2  where M ( B )  is the (ZN)-dimensional matrix obtained from B by 
replacing the quaternions by their two-dimensional matrix representatives; Tdet( €3) is 
also a (scalar) polynomial function of the quaternion matrix elements of 8. Vetails of 
these methods can be  found in the original references. We shall use equations (3.3)- 
(3.14) and (4.1)-(4.5) of [23] where similar integrals are encountered. We also define 
the Vandertnonde determinant 

 AN(^)= n (+ej) .  (23) 
,<, j  

Note that sign(A,(fl)) = sign(QN(fl)) 

3.1. Joint-probability density f i ~ r  the eigenangles 

As explained above the joint-probability density in the present case can be written as 
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Using (3.31, (3.6). (3.9) and  (3.10)t of [231 we find (see appendix 1 for details): 

A Pandey and P Shukla 

Here F is a 2m-dimensional antisymmetric matrix with 2m = N or N +  1 as N is even 
or  odd. The matrix elements F,, are given, for i, j = I , .  . . , N, by 

2 sin k(0, - 0,) 
k 

F , , = F ( 0 , - 0 , ;  t ) = -  exp(-2k2f) 
T X > "  

with k integer or  half-integer as in (18). For odd N, we have in addition 

F(.N+I =-F~+i. i= 1 (27) 

for i =  1 , .  . . , N, and FN+,.N+,=O. As in the Gaussian case [23], Pf in (25) contains 
the main cdependence and, for large f ,  is proportional to Q N ( 0 ) .  

3.2. Correlation functions f o r  finife N 

Following closely the method of section 4 of [23] we write (25) in the form (see 
appendix 2 for proof) 

P ( 0 ;  r)=(N!)- 'Tdet[@(O,-B,;  f ) ]  ,,,=,, , N  (28) 

where 

with S, ,  DN, -IN given by 

1 I N - l I / 2  sin( N0/2) 

271 k = - , N - I I / Z  271 sin(0/2) 
S N ( 0 ) = -  1 exp(ikO)= 

1 (N-I l /Z 

71 1>1,  
DN(O; t ) = - -  1 exp(2k2t)ksin(k0) (31) 

1 "  sin( k0) Z: exp(-2k'f)- (32) k '  
J N ( O ; f ) = - -  

71 L = I N + l i / 2  

The summation index k acquires, as in (18), (26), integral o r  half-integral values as 
N is odd o r  even. 

It is shown in appendix 3 that 

in which T is a constant quaternion. Moreover 

@(O; f )  d 0  = 2 ~ @ ( 0 ;  I )  = N. (34) 

t The expression given in (3.9) is for a,, rather than a, ,  as slated. The corresponding error in (3.271 does 
not affect the lilter results in [Zi]. Moreover the same result for add N gives additional lerms in (26)  which, 
ab shown in  appendix I .  do nai affect Pf [F ]  in ( 2 5 ) .  
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Thus theorem 4.1 of [23] can be applied repeatedly on (28) to obtain the correlation 
functions (20). We get 

R, (0  ,,..., 0,; t)=Tdet[@(O,-O,; r ) ]  ,.,=,. (35) 
For f = 0, m, (35) agrees with the results given by Dyson [25] for COE and CUE. For 
t + CO, JN + 0, D, + 00 but JNDN + 0, so that JN and DN can be effectively dropped 
from (29) since, in the Tdet expansion, they appear only in the combination JNDN. 
For the same reason, the negative signs in (311, (32) can also be dropped, but have 
been retained to make correspondence with the results in [25] as well as the N + m 
results O F  [22, 231. 

3.3. Correlation functions for N+ m 

Since R,=(N/2?r ) ,  we write 0=2?rr/N. Then, for large N, S,(B)+(N/Z?r)S(r), 
&(e; t ) + ( N / 2 r ) * D ( r ; A ) ,  JN(O; t ) e J ( r ; A )  where 

sin r r  
.S(r)=- 

r r  

dk exp(2Ak2)ksin(kr) 

sin(kr) 
J ( r ;  A)=- -  ' 1- exp(-2Ak2) ~ 

r7, k 

and, as defined in section 1, 

A =  - 1. (3 (39) 

Since J N ,  DA. always appear in the combination JNDN, we can replace @(e; I )  in (35) 
by (N/2?r)u(r ;  A) where 

Taking N +  00 and / + O  limits with A finite, we obtain from (221, (35) 

Rn(r, ,..., r , ;A)=Tdet[u(r,-r , ;  A)I, , ,=, ,  ,, (41) 

agreeing with the G O E - C U E  results, (2.33)-(2.36) of [23]. Since the equilibrium result 
is obtained for A+m, the transition takes place for t=O(N-'). 

The cluster functions and their Fourier transforms are given in appendix 4. 

4. CSE' CUE ensembles 

To obtain the CSE + CUE results, i t  is tempting to use the initial distribution P(+; 0) = 
C4(N)(QN($))4,  where C , ( N ) = ( 2 r ) - N 2 N ' 2 N - ' i  ((2N)!)- ' .  However the CSE is real- 
ized in physical systems with doubly-degenerate eigenvalues [28]; it is due lo the well 
known Kramers' degeneracy. The degeneracy is broken for t f 0. To take proper 
account of this, we shall consider (14), (19) for 2N-dimensional matrices with the 
initial distribution 

P ( 6 I . .  . , 6 N  ; 0 )  
= C , ( N ) ( Q N ( ~ ) ) " S ( ~ , - ~ , + , ) S ( ~ 2 - ~ N t * )  . .  . S ( $ N - @ > ~ ) .  (42) 
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Similar considerations apply for CSE-)GUE ensembles also [23]. The rest of the 
calculations run parallel to that in section 3. 

4.1. Joinf-probability density for the eigenangles 

To evaluate the integral in (14), we first integrate over the variables &+,, , , , , ,$>N. 
Because of the S-functions, the result is the limit (dj+,.+ + d j )  of the integrand which 
is of the form 010. To evaluate the limit, note that 

A Pandey and P Shukla 

! 

(-1)N(N-ll/22N 
+... (43) 

(QN(dI - 

Q2N(dI.. . d Z N )  (dl-dNtt).. . (dN -4" 
and 

lim(-l) N i N - 1 ) / 2  det[f(~j-d,) l i . ,=l  ...., 2 N  

( A  - A . .  i ( A ~  - A  i 
\ Y l  Y N t l , ~ .  , I Y N  Y i N ,  

a 
= det[ f ( 8, - d;), --Ab', - d,)] . (44) adj i = 1 .  .... 2N 

;=I. ..., N 

The other terms on the RHS of (43) do not contribute to the limit. Thus 

Using (3.4), (3.7) and (3.11) of [231 we can now integrate over C,, . . . , CN. The result 
;* ( e n -  .,....nnrl;r , I  
1 1  ,.,U- "&,&,".".A L, 

where the ZN-dimensional antisymmetric matrix F is given by 
2 "  

F,,=F(O,-B,; f )= -  1 exp(-2k2f)ksin k(O,-B,) (47) 
$7 h = I / L  

with k half-integral 

4.2. Correlafion funclions for finite N 

As in section 3.2, we write (46) in the form (appendix 2 gives the proof) 

P(B;f)=(2N!)-'Tdet[@(B,-O,; f ) ] + ,  ,..., 2 N  (48) 
where 

with S,, determined by (30) and K 2 N  by 

I "  
K , N ( B ;  f ) = - -  1 exp(-2k'r)k sin(k0). (51) 

77 X = N + l / >  
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Here the summation index k is always half-integral. As shown in appendix 3, @ also 
satisfies the relation ( 3 3 ) .  Moreover the integral for @(O, I )  in (34) yields 2N. Thus 
making repeated use of theorem (4.1) of [23], we find the correlation functions 

R , , ( & ,  . . . , 0 , ;  1) =Tdet[@(B[-B,; t)lj.,-, . . . . . n .  (!2) 

As in (351, the f =cc result of (52) agrees with the C U E  result of Dyson [ 2 5 ] ,  while 
the t = O  result yields Dyson's CSE result when the double degeneracy is properly 
incorporated in the latter. 

4.3. Correlation functions for N -  m 

Since R , =  N/? i  in this case, we write 0 = n r / N .  For large N, S 2 N ( B ) + ( N / ~ ) S ( r ) ,  
1 2 N ( 0 ;  f ) + I ( r ; A ) ,  K,,(B; f ) + ( N / r ) ' K ( r ; A ) ,  where S ( r )  isgiven by(36),  I ,  K are 
given by 

d k  exp(-2Akz)k sin(kr) (54) 

and A is 

*=(;)21. 

agreeing with the GSE+ CUE results, (2.66)-(2.68) of [23]. Again, the transition takes 
place for t = O( N-'1. 

See appendix 4 for the cluster functions and their Fourier transforms. 

5. Hierarchical relations among correlation functions 

The correlation functions R,, are known in closed forms only for the above two cases. 
There is, however, interest i n  other initial conditions and other p values (e.g. the 
Poisson+ COE transition). We ask therefore whether one can obtain information about 
the large-N forms directly from (9 ) ,  without explicitly solving it for finite N .  A similar 
question for the G E ~ ( [ )  has led [16] to B B G K Y - l i k e  hierarchic set of relations among 
the R. ( R ,  related to Rn+,). We shall in this section obtain identical relations for 
cEp(f) also; this will, infer alia, confirm the validity of the transition parameter A for 
all ensembles. 
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In section 2 we chose u2 = 1 so that the results for finite N in sections 3 and  4 can  
be  written compactly. In the present section it  will be helpful to keep it  general. Thus, 
in (9), wereplace ( J P / J f )  by ( I / u ' ) ( J P / J f ) .  We now integrateboth sidesofthe equation 
over OH+,,  . . . , 0, and multiply by N ! / ( N  - n ) ! .  Then, using (201, we obtain 

Here we have made use of the fact that the integral 

J'P 
do,,, . . . d8,- 

( N - n ) !  J O ;  
N !  j2*, , , I  

is zero for j >  n and is (J*R, /JOj)  for 1 S j S  n. Similarly the integral 

N !  I... (do., , . . .  
( N - n ) !  

is zero for j > n ;  for 1 S j 6 n, its value is 

J 0, ( R , ,  cot(?)) 

if 1 s  i e n ,  and is 

if i > n. Note that, for n = N, R,,, = 0, so that (58) contains (9) as a special case. W e  
now take the limit N + CO for fixed n. 

We begin with R , ( O ;  1 ) .  This is needed since it fixes the scale for the eigenangle 
fluctuations. It is convenient to write R !  = N p ( 0 :  t )  so that ,5 is normalized to unity. 
and choose Pu'N = 1; these choices are also encountered in the studies of the Gaussian 
ensembles [16,21]. Then (58) yields for large N 

where a principal-value integral is taken. This nonlinear equation gives uniquely p ( 0 ;  f )  
starting from an  initial p (  0; 0). Terms ignored in (59) are N-'(J'p/JO') and the integral 
involving ( N - ' R 2 ( 0 ,  + ) - p ( O ) p ( @ ) ) ;  both are of order N - '  o r  lower. Equation (59) 
can be written in a more compact form if we introduce the transform 

where the 'angle' J, is complex. The  transform gives back the density uniquely via the  
relation 

(61) 
1 p (  0 )  =- Im g( 8-is) 
rr 



Eigenvalue correlafions in the circular ensembles 3919 

where S is a small positive number; (the real part is related to the principal-value 
integral in (59)). Then (59) is equivalent to 

and hence to 

E(*;  f)=&7(#-43*; f);O). (63) 

Equations (591, (63) may be called the Dyson-Pastur equations, being analogous to 
their results for mp( t ) ;  see [16,20,21,32]. It can be shown that, for large f, p ( 8 )  = 
( 2 n ) - ' .  Similarly, if i ( 8 ;  0) = (271)-', then p (  8 ;  I) = (27r-I for all f. Similar results are 
obtained in the Gaussian cases also where, instead of the uniform density, one uses 
the (equilibrium) semicircular density. However, unlike the Gaussian cases, p (  8; 0) = 
S(8) does not lead to the equilibrium density for all t > O .  

For n > 1, we consider eigenangles in the neighbourhood of 8 and write as in (21), 
(22), 8,=8+r j /Np and R.=R,(Np)" where Np=R,(O).Then, forlarge N,thelast  
form of (58) is O(N"t2) while, with fixed tu2, the first form is (1 /  u')(aR./at) = O( N " ) .  
This implies that the transition takes place for finite values of ru'N2 (and hence small 
tu'). We therefore define, as in section I ,  A =  fu2Nzc2. Let us agree that, for f = O ,  p 
is not singular (nor zero) in the neighbourhood of 0 and the R, are also well defined. 
Then (59) implies that, for finite A, p varies little from its ' t  = 0 value. Hence, keeping 
only O( N"+2) terms, 

I 

1 JR, JR,, (Np)"'* - - _ =  
u2 at J A  ' 

Similarly, 

Here A, = A , , ( r l , .  . . , r n )  of (23); note that for small separations Q N ( 0 ) = A , , ( 8 ) ;  also 
terms involving (Jp/J8) will be of lower order. To evaluate the integral term in (58) 
we divide the range of integration of 0,,+, into two parts. In the first part, 18, -&+,I = 
O ( N - ' )  and hence R,,,-t(Np)"+'R,+, and d8,,+,/(2cot((8,-8, , , , ) /2))~ 
dr,,+,/(r, - rn+,)  with the range of integration being (-m,m). Ignoring dp /aO,  this part 
contributes 

I n  the second part, e,,, is uncorrelated with 8, and hence R,?+,+ R,;R,(8,+,); this 
gives, to O( N"+'), 

since 2 (J/Jr;)R,, = O .  Substituting (64)-(67! i n  (581, we find the hierarchical relations 
for N m: 

which is the same as (71 )  of [I61 for the G E ~ .  
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We emphasize that, for finite u2, the approach to equilibriud is very rapid for the 
density p as well as the correlations R.. However, for 0 2 N =  1, the former transition 
will be smooth while the latter is still discontinuous. It is the rapid transition in R, 
which should be observed in the spectra of time-evolution operators of chaotic systems 
with time-periodic Hamiltonians. We also mention here that the general solution of 
(68) is still unknown, but some approximate solutions (for cases other than those in 
sections 3 and 4) can be worked out [16]. 

6. Conclusion 

The equilibrium ensembles (Gaussian as well as circular) derive from a minimum 
information principle [33] in which, apart from the exact symmetries, no other informa- 
tion abo.! !he sys!em is !aken in!o accoun!. The EroFnian ensemb!es provide a ngtcrz! 
framework, consistent with the principle, for studying the gradual breaking of one or 
more symmetries. We find that, just as in the Gaussian cases, the eigenvalue correlations 
in the circular ensembles display a n  extreme sensitivity with respect to small symmetry 
breaking; equilibrium i s  reached rapidly. For large matrices, the two ensembles yield 
identical eigenvalue correlations under similar conditions. The ensembles are moreover 
ergodic [34]; almost all members of the ensemble display the same eigenvalue correla- 
tions as the ensemble-averaged ones. We conjecture that the evolution operators of 
quantum maps with chaotic classical limits are characteristic members of the circular 
type Brownian ensembles. 

The two-eigenvalue correlation function R, usually gives the important observable 
correlation effects. Specifically, the small-frequency behaviour of the Fourier transform 
( 1  - b2( k ) ;  see appendix 4) of (6( r )  - 1 + RZ( r ) )  (where S( r )  is included to take account 
of the self-correlation) determines whether an eigenvalue spectrum is rigid or uncorre- 
lated; a suppression of the amplitudes for small frequencies implies rigidity. Berry [6] 
has shown that the small-frequency behaviour in autonomous chaotic systems is like 
that in the equilibrium ensembles; the proofs rely on a semiclassical quantization of 
chaotic systems involving the classical periodic orbits [35], and a principle of uniformity 
for the distribution of periodic orbits and their amplitudes [36]. Extending these ideas 
to quantum maps [37] and using the methods of [E]  for small TR-non-invariance, we 
have recently [38] proved the following result: the small-lkl form of ( 1  - b , ( k ) )  of a 
chaotic map with small m-non-invariance is given exactly by the corresponding result 
(109) of appendix 4 for the COE+CUE and CSE+CUE transitions. An expression for 
A is also obtained which, by the methods of [39], is independently identified as the 
local symmetry-breaking parameter. This gives a confirmation of our above conjecture. 
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Appendix 1. Proof o f  (26), (27), (47) 

We start with the proof of (26) for even N. Using the corrected form of (3.9) of [231 
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we have 

(69) 
1 "  

I 7 1  A=-" 

-_ -.  1 exp(-2k't)exp(ik(O,-O,))/k 

which yields (26). Here in the second step we have used (18) and in the third step 
evaluated the double integral; the summation indices are all half-integral. 

For odd N, weAfirst write (25) with F replaced by an (N+I j -d imens iona l  anti- 
symmetric matrix F. Then, from (3.91, (3.10) of [23], with i, j =  I , .  . . , N, 

FN+~.N+I=O (70) 
- 

and 

pg = (1 d d j  d42[f(Oi - ~ , j ~ ( O j - ~ 2 j - ~ ( O j - ~ ~ ) f ( 0 j - ~ , ) l  
2PP&5d2P0 

= E.j - a ,  + a<. (72) 

Here in (71), (72) the summation indices are all integral. The integral in (71) is then 
straightforward; only the k = 0 term gives non-zero contribution. For the integral in  
(72) we follow the similar steps in (69), but now there are additional terms (which 
give a, and a, in (72)) coming from (k ,  # 0, k2 = 0) and ( k ,  = 0, kz # 0); moreover, in  
F,i, k ,  = k, = 0 should be excluded. Then E., is given by (26) and a, by 

(73) 
2 -- 
71 L = l  

ai =- 1 exp(-2k2t) sin(k0;)lk. 

Finally (25)-(27) are recovered in the stated form, if det F = d e t  $ (s,o that P f ( k ) =  
Pf(Fj). To prove the latter, we do the following operations in det F sequentially: 
R N - R N . , ,  R , v - , - R N - 2  , . . . ,  R 2 - R I ,  C,v-C,,,-,, CN-, -C,v-2r  C, -C , ,  where R ,  
and C, stand for the ith row and j t h  column respectively. After these operations we 
expand the determinant about the last column and  then about the last row. The resultant 
( N  - 1)-dimensional determinant is independent of the a ; ;  hence the proof. 
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To prove (47) we use (3.1 I )  of [23]. We have, with half-integral summation indices, 

(74)  
I "  

lTr h=-Lc 

-_  - . 2 k exp(-2k'f) exp(ik( 0, -0 , ) )  

which yields (47). 

Appendix 2. Proof of (28). (48) 

Using the methods of [23,25], we verify here that the joint-probability density of 
eigenangles in the CO€+ CUE and C S E + C U E  ensembles can be expressed as a Tdet of 
a self-dual quaternion matrix. 

We start with (28). We define g(0, - 0,) = cj/2. Then 
1 ( N - I ) / 2  

T ::e 
g ( B ) +  J N (  8 )  =- 2 exp(-2k2t) sin(kO)/k. (75) 

It would be  good to write sin k 0 =  (eiXH-e-"')/2i in (30)-(32), (75) in the following 
calculations. Consider now even N, in which case the index k is half-integral. The 
2N-dimensional matrix product, 

ikexp(2k2t-ik0,) 
0 

exp( i kB,)  
'=((ik)- '  exp(-2k2t+ik0,) 

has rank N, so that its rows ( g  + J N ,  SN ) are linear combinations of the rows (S,, D,  ). 
Therefore det[@] is not changed when we subtract the rows (gN+JN,  S,) from the 
rows (J,, S,) of @. The subtraction gives 

del[@] = (Ti :) = det[gl det[DNl 

Now, 

det[g] = 2 - N  det[F] = 2-N(PcF])2 

and 

det[D,] = ( Z r ) - "  det[exp(-ikO,)] det[ik exp(2k2t+ik0,)] 

= 2 N (  N ! ) 2 ( C ! (  e x p [ N ( N 2 -  l ) f /6 ] (QN(0) l2  

so that, from ( 2 5 ) ,  (77)-(79), 

de t [@]=(N!P(B;  

yielding ( 2 8 ) .  

(77) 
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For odd N, the index k is integral and therefore k = 0 is also included. We then 
define the 2N-dimensional matrix product G, obtained from G by the replacements, 

(ik)-' exp(-2kzt + ik&) -+ 6-l 

ikexp(2k't-ikOj)+6 (81) 

for the elements with k = 0, where 8 is arbitrary. Then 

I: - f  S N ( ~ ;  - 0,) DN(8,-ej)+(S/277)\ ,*,\ 

- 8,) + JN (Sf - 8,) + (2778)-' sN(ej-ej) I ' " - I  
-6 - 

which is still of rank N.  Instead of [@(Si - O;)], we consider the matrix 

The de!erl??ir?an: of [m6J is :zchaxged by s:b!:achg frc- the :=ws [JN, SNj the 
corresponding rows of G,. Thus 

0 
SN 

- g - (2 ss 1-1 det[@,] = ( 
= det[g + (277S)-'] det[DN + (8 /2a) ] .  

= (2N778)-l det[F] (85) 

where, in the second step, the second determinant is zero, being that of an antisymmetric 
matrix of odd dimension ( N + 2 ) .  Det[DN+(6/2a)]  can be evaluated as in (79) by 
using the second replacement of (81) for k=O. We find then 

det[DN + ( 6 / 2 n ) J  = ( 2 N ? l s ) ( N ! C , ( N ) Q N ( 8 ) ) 2 e x p [ N ( N ' -  l ) r / 6 ] .  (86) 
Equations (25), (83)-(86) yield (SO), and hence (28), for 8 +O.  

We now turn to (48). We define h(8 ,  - 0,) = F,,/2 so that 

The 4N-dimensional matrix product, 
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is of rank 2N. Hence det[@] is unchanged, if we subtract from its columns (t::) the 

corresponding columns of G. This gives 

A Pandey and P Shukla 

det[@] = det (;:: -0") = det[h] det[l,,] 

Then, as in (78), (79) above, we have 

det[h] = 2-2N(Pf[F1)2 (90) 

and 

det[l,,] = 2,"((2N)!Cq(N)QZN(0)), exp[N(4N2- 1)1/3] (91) 

so that, from (46) 

det[@]=((2N)!P(B; (92)  

yielding (48). 

Appendix 3. Verification of (33) 

For any two functions J , ( O ) ,  fi(0), we define the composition 

Then, for the COE'CUE ensembles, the definitions (30)-(32) 

S, * s, = S N  (94) 

D, * SN = S N  * DN = D,  (95) 

J, * S, = S, * JN = O  (96) 

JN * DN = DN * J N  = O  (97) 

which along with (29) yield (33) with 

.='(' 2 0 -1 0 )  

Similarly, for the CSE+CUE ensembles, we have, from (30), ( 5 O ) ,  (511, 

S2N * S2N = S 2 N  

1 2 ,  * s,, = Sm * I" = I,, 

K , ,  * S 2 N  = s,, * K , ,  = O  

KZN * D,, =DZN * K , ,  = O  

(99) 

(100) 

(101) 

(102) 

which, for @*a, yield an equation of the type (33) with 
I 
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Appendix 4. Cluster functions and Fourier transforms 

The n-angle cluster functions Y. are essentially the n-angle correlation functions R, 
from which the lower-order correlation effects have been subtracted out [23, 251. For 
example, for the unfolded spectra, Y,  = R, = 1, Y> = 1 -RI etc. For the COE + CUE 

transitions, these are given by 

Y,,(r, , . . . , r, ; A )  = 1 4 rl - r2)u(r2 - r d ,  . . . , d r n  - r l )  (104) 
P 

where E,, denotes a sum over the ( n  - l ) !  distinct cyclic permutations of the indices 
(1 ,2 , .  . . , n)  and  D is defined in (40). Like the R. in (41), U, is also a scalar and its 
scalar nature can be made explicit by inserting the operation ftr  before the product in 
(104). Its Fourier transform is given by 

S ( k ,  +. . .+ k,)b,(k, , . . . , k , ;  A) 

,,2 

- d p  1 B(p)B(p+ k,) . . . B ( p +  k, + . . .+ kn-l) (105) 

where B(k) is the Fourier transform of u ( r ) .  Dropping some factors which d o  not 
affect the value of b,, we have 

- I_, 

) (106) 
E(k) k exp(8 1r2 k2A)r (k )  

4 k )  
B(k) = ( -k-lexp(-87i2k2A)(1-&(k))  

with 

For n = 2, b, is a function of ( k ,  - k2) (since Y2 is a function of r, - rJ. Then 

For Ikl<< 1, this is given by 
1- b2(k) =Ikl{l+exp(-87i'AIkl)} 

For CSE+CUE, we again have (104) with U given by (57 )  and hence (105) with 0 
given by 

The corresponding b2 is given by 

I f 2  =- j  dp- Ikl+Pexp(-87i2A(2plkl+ k')) l k l > l .  
-112 P 

For Ikl<< 1, we again have (109) 
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